Dialogue systems controlled by predefined or rule-based scenarios derived from counseling techniques, such as cognitive behavioral therapy (CBT), play an important role in mental health apps. Despite the need for responsible responses, it is conceivable that using the newly emerging LLMs to generate contextually relevant utterances will enhance these apps. In this study, we construct dialogue modules based on a CBT scenario focused on conventional Socratic questioning using two kinds of LLMs: a Transformer-based dialogue model further trained with a social media empathetic counseling dataset, provided by Osaka Prefecture (OsakaED), and GPT-4, a state-of-the art LLM created by OpenAI. By comparing systems that use LLM-generated responses with those that do not, we investigate the impact of generated responses on subjective evaluations such as mood change, cognitive change, and dialogue quality (e.g., empathy). As a result, no notable improvements are observed when using the OsakaED model. When using GPT-4, the amount of mood change, empathy, and other dialogue qualities improve significantly. Results suggest that GPT-4 possesses a high counseling ability. However, they also indicate that even when using a dialogue model trained with a human counseling dataset, it does not necessarily yield better outcomes compared to scenario-based dialogues. While presenting LLM-generated responses, including GPT-4, and having them interact directly with users in real-life mental health care services may raise ethical issues, it is still possible for human professionals to produce example responses or response templates using LLMs in advance in systems that use rules, scenarios, or example responses.
翻译:暂无翻译