Collaborative filtering (CF) is the key technique for recommender systems. Pure CF approaches exploit the user-item interaction data (e.g., clicks, likes, and views) only and suffer from the sparsity issue. Items are usually associated with content information such as unstructured text (e.g., abstracts of articles and reviews of products). CF can be extended to leverage text. In this paper, we develop a unified neural framework to exploit interaction data and content information seamlessly. The proposed framework, called LCMR, is based on memory networks and consists of local and centralized memories for exploiting content information and interaction data, respectively. By modeling content information as local memories, LCMR attentively learns what to exploit with the guidance of user-item interaction. On real-world datasets, LCMR shows better performance by comparing with various baselines in terms of the hit ratio and NDCG metrics. We further conduct analyses to understand how local and centralized memories work for the proposed framework.
翻译:合作过滤(CF)是建议者系统的关键技术。纯CF方法仅利用用户项目互动数据(例如点击、喜欢和观点),而且只受到广度问题的影响。项目通常与无结构文本等内容信息(例如文章摘要和产品审查)相关联。CF可以扩展至影响文本。在本文件中,我们开发了一个统一的神经框架,以无缝利用互动数据和内容信息。拟议的框架称为LCMR,以记忆网络为基础,分别包括利用内容信息和互动数据的地方和集中记忆。通过将内容信息建模为本地记忆,LCMR通过用户项目互动指南,认真学习如何利用内容信息。在现实世界数据集中,LCMR显示通过比较各种基准在打击率和NDCG指标方面的业绩更好。我们进一步进行分析,以了解地方和集中记忆如何为拟议框架工作。