We present sMolBoxes, a dataflow representation for the exploration and analysis of long molecular dynamics (MD) simulations. When MD simulations reach millions of snapshots, a frame-by-frame observation is not feasible anymore. Thus, biochemists rely to a large extent only on quantitative analysis of geometric and physico-chemical properties. However, the usage of abstract methods to study inherently spatial data hinders the exploration and poses a considerable workload. sMolBoxes link quantitative analysis of a user-defined set of properties with interactive 3D visualizations. They enable visual explanations of molecular behaviors, which lead to an efficient discovery of biochemically significant parts of the MD simulation. sMolBoxes follow a node-based model for flexible definition, combination, and immediate evaluation of properties to be investigated. Progressive analytics enable fluid switching between multiple properties, which facilitates hypothesis generation. Each sMolBox provides quick insight to an observed property or function, available in more detail in the bigBox View. The case study illustrates that even with relatively few sMolBoxes, it is possible to express complex analyses tasks, and their use in exploratory analysis is perceived as more efficient than traditional scripting-based methods.
翻译:我们介绍了长分子动态模拟(MD)的探索和分析数据流代表SMollBoxs。当MD模拟达到数百万个快照时,框架观察已不再可行。因此,生物化学家在很大程度上只依靠对几何和物理化学特性的定量分析;然而,利用抽象方法研究内在空间数据妨碍探索并带来相当大的工作量。SMollBoxs将一组用户定义的特性的定量分析与交互式的3D可视化联系起来。它们能够对分子行为进行直观解释,从而有效地发现MD模拟中具有生物化学意义的部分。SolBoxs遵循基于节点的模型,以便灵活定义、组合和立即评估所要调查的属性。渐进分析使多种特性之间的流体转换成为了便利于产生假设的。每个 solBoxs 都为观察到的属性或功能提供了快速的洞察力,这些属性或功能在大Box View中可以更详细地查阅。案例研究表明,即使使用相对较少的 solBoxes,但以相对较少的数值为重要部分,也有可能在以传统方式分析中进行较复杂的分析。