The filtering-clustering models, including trend filtering and convex clustering, have become an important source of ideas and modeling tools in machine learning and related fields. The statistical guarantee of optimal solutions in these models has been extensively studied yet the investigations on the computational aspect have remained limited. In particular, practitioners often employ the first-order algorithms in real-world applications and are impressed by their superior performance regardless of ill-conditioned structures of difference operator matrices, thus leaving open the problem of understanding the convergence property of first-order algorithms. This paper settles this open problem and contributes to the broad interplay between statistics and optimization by identifying a \textit{global error bound} condition, which is satisfied by a large class of dual filtering-clustering problems, and designing a class of \textit{generalized dual gradient ascent} algorithm, which is \textit{optimal} first-order algorithms in deterministic, finite-sum and online settings. Our results are new and help explain why the filtering-clustering models can be efficiently solved by first-order algorithms. We also provide the detailed convergence rate analysis for the proposed algorithms in different settings, shedding light on their potential to solve the filtering-clustering models efficiently. We also conduct experiments on real datasets and the numerical results demonstrate the effectiveness of our algorithms.


翻译:过滤组群模型,包括趋势过滤和组合组合,已成为机器学习及相关领域思想和模型工具的重要来源。这些模型中最佳解决方案的统计保障已经得到广泛研究,但计算方面的调查仍然有限。特别是,实践者经常在现实世界应用中采用一级算法,对其优异操作者矩阵结构条件差的优异表现印象深刻,从而解决了理解第一阶算法趋同属性的问题。本文解决了这一开放的问题,通过确定一个\textit{全球错误捆绑}条件,促进了统计与优化之间的广泛互动,这为大量双重过滤组群问题所满足,并设计了一类\textit{普遍化的双重梯度算法,这是在确定性、有限和在线环境中的第一阶算法的优异结构。我们的结果是新的,有助于解释为什么过滤组群集模型可以通过第一阶算法高效率地解决。我们还提供了详细的合并率分析,用于在不同的数据组群集模型中进行我们提出的数字分析。我们还提供了关于不同数据分析结果的高效化模型。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员