Citation recommendation is an important task to assist scholars in finding candidate literature to cite. Traditional studies focus on static models of recommending citations, which do not explicitly distinguish differences between papers that are caused by temporal variations. Although, some researchers have investigated chronological citation recommendation by adding time related function or modeling textual topics dynamically. These solutions can hardly cope with function generalization or cold-start problems when there is no information for user profiling or there are isolated papers never being cited. With the rise and fall of science paradigms, scientific topics tend to change and evolve over time. People would have the time preference when citing papers, since most of the theoretical basis exist in classical readings that published in old time, while new techniques are proposed in more recent papers. To explore chronological citation recommendation, this paper wants to predict the time preference based on user queries, which is a probability distribution of citing papers published in different time slices. Then, we use this time preference to re-rank the initial citation list obtained by content-based filtering. Experimental results demonstrate that task performance can be further enhanced by time preference and it's flexible to be added in other citation recommendation frameworks.


翻译:引文建议是一项重要任务,有助于学者寻找可以引用的候选文献。传统研究侧重于推荐引文的静态模式,这种模式没有明确区分时间差异造成的论文差异。虽然一些研究人员通过动态增加时间相关功能或模拟文本专题,对按时间顺序引用的建议进行了调查。这些解决方案很难解决功能一般化或“冷点启动”问题,因为没有用户特征信息或从未引用过孤立的论文。随着科学范式的兴起和衰落,科学专题往往会随着时间的变化而变化和演变。人们在引用论文时有时间偏好,因为大部分理论基础都存在于古典读物中,这些古典读物在旧时出版,而新技术则在较近的论文中提出。为探索按时间顺序引用建议,本文希望预测基于用户询问的时间偏好,即引用在不同时间切片中发表的论文的概率分布。然后,我们利用这个时间偏好重新排列通过基于内容的过滤获得的初步引文清单。实验结果表明,任务表现可以随着时间偏好而得到进一步的提高,其他引文体建议框架中可以增加灵活性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员