Gaitonde and Tardos recently studied a model of queueing networks where queues compete for servers and re-send returned packets in future rounds. They quantify the amount of additional processing power that guarantees a decentralized system's stability, both when the queues adapt their strategies from round to round using no-regret learning algorithms, and when they are patient and evaluate the utility of a strategy over long periods of time. In this paper, we generalize Gaitonde and Tardos's model and consider scenarios where not all servers can serve all queues (i.e., the underlying graph is an incomplete bipartite graphs) and, further, when packets need to go through more than one layer of servers before their completions (i.e., when the underlying graph is a DAG). For the bipartite case, we obtain bounds comparable to those by Gaitonde and Tardos, with the factor slightly worse in the patient queueing model. For the more general multi-layer systems, we show that straightforward generalizations of the utility function and servers' priority rules in Gaitonde and Tardos's model may lead to unbounded gaps between centralized and decentralized systems when the queues use no regret strategies. We define a new utility and a service priority rule that are aware of the queue lengths, and show that these suffice to restore the bounded gap between centralized and decentralized systems observed in bipartite graphs.
翻译:Gaitonde 和 Tardos 最近研究了一个队列网络模式, 即队列竞争服务器并在未来回合中重新发送返回的包包。 它们量化了额外处理能力的数量, 以确保分权系统的稳定, 当队列使用无regret 学习算法来调整其全局战略时, 当队列使用无regret 学习算法来调整其全局战略时, 当队列使用耐心并评估长期战略的效用时, 我们得到与Gaitonde 和 Tardos 相似的界限, 耐心排队模式中的因素稍差一点。 对于更普遍的多层系统, 我们显示, 并非所有的服务器都能够满足所有队列( 即, 底图是不完整的双向图表), 并且, 以后, 当软件在 Gaitonde 和 Tardo 的中央端列规则中, 需要经过超过一个层次的服务器优先级规则( 即基本图是 DAGAGAG) 。 对于两组来说, 我们得到的分级规则和 和 集中化的顺序规则中, 将显示这些优先级规则的系统之间的空空空空空跨差, 我们没有看到这些系统。