Advances in machine learning (ML) open the way to innovating functions in the avionic domain, such as navigation/surveillance assistance (e.g. vision-based navigation, obstacle sensing, virtual sensing), speechto-text applications, autonomous flight, predictive maintenance or cockpit assistance. Current certification standards and practices, which were defined and refined decades over decades with classical programming in mind, do not however support this new development paradigm. This article provides an overview of the main challenges raised by the use ML in the demonstration of compliance with regulation requirements, and a survey of literature relevant to these challenges, with particular focus on the issues of robustness and explainability of ML results.


翻译:机器学习(ML)的进步为创新航空领域的功能开辟了道路,如导航/监视协助(例如,基于视觉的导航、障碍感测、虚拟遥感)、语音文字应用、自主飞行、预测性维护或驾驶舱协助等,但数十年来根据传统程序界定和完善的现行认证标准和做法并不支持这一新的发展模式,但这一条概述了使用ML在证明遵守规章要求方面引起的主要挑战,并调查了与这些挑战有关的文献,特别侧重于ML结果的稳健性和可解释性问题。

0
下载
关闭预览

相关内容

吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
9+阅读 · 2021年3月25日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
35+阅读 · 2021年8月2日
Arxiv
9+阅读 · 2021年3月25日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员