Deep reinforcement learning models are vulnerable to adversarial attacks that can decrease a victim's cumulative expected reward by manipulating the victim's observations. Despite the efficiency of previous optimization-based methods for generating adversarial noise in supervised learning, such methods might not be able to achieve the lowest cumulative reward since they do not explore the environmental dynamics in general. In this paper, we provide a framework to better understand the existing methods by reformulating the problem of adversarial attacks on reinforcement learning in the function space. Our reformulation generates an optimal adversary in the function space of the targeted attacks, repelling them via a generic two-stage framework. In the first stage, we train a deceptive policy by hacking the environment, and discover a set of trajectories routing to the lowest reward or the worst-case performance. Next, the adversary misleads the victim to imitate the deceptive policy by perturbing the observations. Compared to existing approaches, we theoretically show that our adversary is stronger under an appropriate noise level. Extensive experiments demonstrate our method's superiority in terms of efficiency and effectiveness, achieving the state-of-the-art performance in both Atari and MuJoCo environments.


翻译:深入强化学习模式容易受到对抗性攻击,这种攻击会通过操纵受害人的观察而减少受害人预期的累积报酬。尽管以往的优化方法在受监督的学习中产生对抗性噪音的效率较高,但这类方法可能无法达到最低的累积奖赏,因为它们没有全面探讨环境动态。在本文件中,我们提供了一个框架,以便通过重新阐述对功能空间强化学习的对抗性攻击问题来更好地了解现有方法。我们的重新定位在定向攻击的功能空间中产生最佳对手,通过一般的两阶段框架将其击退。在第一阶段,我们通过黑入环境来培训欺骗性政策,并发现一套走向最低奖赏或最坏业绩的轨迹。接下来,对手误导受害人通过干扰观察来模仿欺骗性政策。与现有方法相比,我们理论上表明我们的对手在适当的噪音水平下更强大。广泛的实验表明,我们的方法在效率和效力方面具有优势,在阿塔里和武库两地环境中都取得了最先进的表现。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员