In this paper, we revisit math word problems~(MWPs) from the cross-lingual and multilingual perspective. We construct our MWP solvers over pretrained multilingual language models using sequence-to-sequence model with copy mechanism. We compare how the MWP solvers perform in cross-lingual and multilingual scenarios. To facilitate the comparison of cross-lingual performance, we first adapt the large-scale English dataset MathQA as a counterpart of the Chinese dataset Math23K. Then we extend several English datasets to bilingual datasets through machine translation plus human annotation. Our experiments show that the MWP solvers may not be transferred to a different language even if the target expressions have the same operator set and constants. But for both cross-lingual and multilingual cases, it can be better generalized if problem types exist on both source language and target language.
翻译:在本文中,我们从跨语言和多语言的角度重新审视数学词问题~(MWPs) 。 我们用从顺序到顺序的模型和复制机制,在经过预先训练的多语言模型上构建我们的MWP解答器。 我们比较了MWP解答器在跨语言和多语言情景下的表现。 为了便于比较跨语言的性能,我们首先将大规模英语数据集数学QA作为中国数据集 Matth23K的对等单位加以调整。 然后我们通过机器翻译加上人文注解,将几个英语数据集推广到双语数据集。 我们的实验显示,即使目标表达方式设置和常数相同,也不可能将MWP解答器转换到不同语言。 但是,对于跨语言和多语言的情况来说,如果源语言和目标语言存在问题类型,则会更普遍化。