Particle-based simulations of the Vlasov equation typically require a large number of particles, which leads to a high-dimensional system of ordinary differential equations. Solving such systems is computationally very expensive, especially when simulations for many different values of input parameters are desired. In this work we compare several model reduction techniques and demonstrate their applicability to numerical simulations of the Vlasov equation. The necessity of symplectic model reduction algorithms is illustrated with a simple numerical experiment.
翻译:Vlasov 方程式的粒子模拟通常需要大量的粒子,从而形成一个普通差分方程式的高维系统。 溶解这种系统在计算上非常昂贵, 特别是当需要模拟许多不同的输入参数值时。 在这项工作中,我们比较了几种减少模型技术,并证明它们适用于Vlasov 方程式的数字模拟。 以简单的数值实验来说明对等模型的减少算法的必要性。