In this system paper we present our contribution to the Constraint 2021 COVID-19 Fake News Detection Shared Task, which poses the challenge of classifying COVID-19 related social media posts as either fake or real. In our system, we address this challenge by applying classical machine learning algorithms together with several linguistic features, such as n-grams, readability, emotional tone and punctuation. In terms of pre-processing, we experiment with various steps like stop word removal, stemming/lemmatization, link removal and more. We find our best performing system to be based on a linear SVM, which obtains a weighted average F1 score of 95.19% on test data, which lands a place in the middle of the leaderboard (place 80 of 167).


翻译:在这份系统文件中,我们介绍了我们对2021年COVID-19假新闻共同探测任务的贡献,这提出了将COVID-19相关社交媒体职位列为假的或真实的难题。在我们的系统中,我们通过应用古典机器学习算法以及若干语言特征,如n克、可读性、情感调子和标点来应对这一挑战。在预处理方面,我们试验了各种步骤,如停止删除单词、阻止/消除、链接删除等等。我们发现,我们的最佳运作系统是以线性SVM为基础的,该SVM在测试数据上获得了95.19%的加权平均F1分,该F1分位于领先板中间(167位中的80位 ) 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
已删除
将门创投
9+阅读 · 2017年10月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
13+阅读 · 2020年10月19日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
已删除
将门创投
9+阅读 · 2017年10月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
Arxiv
13+阅读 · 2020年10月19日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员