Modern socio-technical systems are characterized by strategic coopetition where actors simultaneously cooperate to create value and compete to capture it. While conceptual modeling languages like i* provide rich qualitative representations of strategic dependencies, they lack mechanisms for quantitative analysis of dynamic trade-offs. Conversely, classical game theory offers mathematical rigor but strips away contextual richness. This technical report bridges this gap by developing computational foundations that formalize two critical dimensions of coopetition: interdependence and complementarity. We ground interdependence in i* structural dependency analysis, translating depender-dependee-dependum relationships into quantitative interdependence coefficients through a structured translation framework. We formalize complementarity following Brandenburger and Nalebuff's Added Value concept, modeling synergistic value creation with validated parameterization. We integrate structural dependencies with bargaining power in value appropriation and introduce a game-theoretic formulation where Nash Equilibrium incorporates structural interdependence. Validation combines comprehensive experimental testing across power and logarithmic value function specifications, demonstrating functional form robustness, with empirical application to the Samsung-Sony S-LCD joint venture (2004-2011), where logarithmic specifications achieve superior empirical fit (validation score 45/60) while power functions provide theoretical tractability. This technical report serves as the foundational reference for a coordinated research program examining strategic coopetition in requirements engineering and multi-agent systems, with companion work addressing trust dynamics, team production, and reciprocity mechanisms.
翻译:暂无翻译