This paper addresses the localization of contacts of an unknown grasped rigid object with its environment, i.e., extrinsic to the robot. We explore the key role that distributed tactile sensing plays in localizing contacts external to the robot, in contrast to the role that aggregated force/torque measurements play in localizing contacts on the robot. When in contact with the environment, an object will move in accordance with the kinematic and possibly frictional constraints imposed by that contact. Small motions of the object, which are observable with tactile sensors, indirectly encode those constraints and the geometry that defines them. We formulate the extrinsic contact sensing problem as a constraint-based estimation. The estimation is subject to the kinematic constraints imposed by the tactile measurements of object motion, as well as the kinematic (e.g., non-penetration) and possibly frictional (e.g., sticking) constraints imposed by rigid-body mechanics. We validate the approach in simulation and with real experiments on the case studies of fixed point and line contacts. This paper discusses the theoretical basis for the value of distributed tactile sensing in contrast to aggregated force/torque measurements. It also provides an estimation framework for localizing environmental contacts with potential impact in contact-rich manipulation scenarios such as assembling or packing.


翻译:本文论述一个未知的、被掌握的僵硬物体与其环境的接触点的本地化,即机器人的外缘。我们探讨分布式接触感在机器人外部的本地化接触点中起着关键作用。我们探讨分布式接触感在传播式接触点与机器人的本地化接触点之间起着关键作用,而综合力/质度测量在机器人的本地化接触点上起着作用。当与环境接触时,一个物体会根据该接触点施加的动态和可能摩擦限制而移动。该物体的小动作与触动感应传感器可见,间接编码这些限制和界定这些限制的几何方法。我们把极限接触感测问题作为一种基于约束性的估计来拟订。这一估计取决于物体运动动作感应力测量结果以及物体运动(如非渗透性)和可能由僵硬体机械施加的摩擦(如坚持)制约所施加的动态。我们验证了在模拟和对固定点和直线接触的案例研究进行实际实验时所采用的方法。本文还讨论分布式接触度的模型的理论基础,以便进行可进行精确化的实地的对比。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
视觉目标跟踪十年研究进展
专知会员服务
86+阅读 · 2021年3月10日
最新《图神经网络知识图谱补全》综述论文
专知会员服务
155+阅读 · 2020年7月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月15日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
视觉目标跟踪十年研究进展
专知会员服务
86+阅读 · 2021年3月10日
最新《图神经网络知识图谱补全》综述论文
专知会员服务
155+阅读 · 2020年7月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员