Graph convolutional networks (GCNs) have recently enabled a popular class of algorithms for collaborative filtering (CF). Nevertheless, the theoretical underpinnings of their empirical successes remain elusive. In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing. By identifying the critical role of smoothness, a key concept in graph signal processing, we develop a unified graph convolution-based framework for CF. We prove that many existing CF methods are special cases of this framework, including the neighborhood-based methods, low-rank matrix factorization, linear auto-encoders, and LightGCN, corresponding to different low-pass filters. Based on our framework, we then present a simple and computationally efficient CF baseline, which we shall refer to as Graph Filter based Collaborative Filtering (GF-CF). Given an implicit feedback matrix, GF-CF can be obtained in a closed form instead of expensive training with back-propagation. Experiments will show that GF-CF achieves competitive or better performance against deep learning-based methods on three well-known datasets, notably with a $70\%$ performance gain over LightGCN on the Amazon-book dataset.


翻译:最近,通过图表信号处理中的一个关键概念即光滑概念,我们制定了一个统一的图形革命框架。我们证明,许多现有的功能革命方法是这一框架的特例,包括以邻里为基础的方法、低级别矩阵因子化、线性自动编码器和光电GCN,与不同的低射过滤器相对应。在本文中,我们努力通过图形信号处理镜头更好地了解基于GCN的CF方法。通过确定平滑的关键作用,这是图形信号处理中的一个关键概念,我们为CFF开发了一个统一的图形革命框架。我们证明,许多现有的CF方法是这一框架的特例,包括以邻里为基础的方法、低级别矩阵因子化、线性自动编码器和轻GCN。然后,根据我们的框架,我们提出了一个简单和计算高效的CFF基线,我们将称之为基于合作过滤的图形过滤器(GFFF-C)。鉴于隐含的反馈矩阵,GFFFC可以以封闭的形式获得,而不是以反调的昂贵培训。实验将显示,GFFFC在三种广为学习的数据集上,特别是以70美元为业绩。

1
下载
关闭预览

相关内容

CF:ACM International Conference on Computing Frontiers。 Explanation:计算机前沿国际会议。 Publisher: ACM。 SIT: http://dblp.uni-trier.de/db/conf/cf
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
45+阅读 · 2021年9月19日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
3+阅读 · 2020年4月29日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
相关论文
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
3+阅读 · 2020年4月29日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
9+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员