Non-linear dimensionality reduction (NLDR) methods such as t-distributed stochastic neighbour embedding (t-SNE) are ubiquitous in the natural sciences, however, the appropriate use of these methods is difficult because of their complex parameterisations; analysts must make trade-offs in order to identify structure in the visualisation of an NLDR technique. We present visual diagnostics for the pragmatic usage of NLDR methods by combining them with a technique called the tour. A tour is a sequence of interpolated linear projections of multivariate data onto a lower dimensional space. The sequence is displayed as a dynamic visualisation, allowing a user to see the shadows the high-dimensional data casts in a lower dimensional view. By linking the tour to an NLDR view, we can preserve global structure and through user interactions like linked brushing observe where the NLDR view may be misleading. We display several case studies from both simulations and single cell transcriptomics, that shows our approach is useful for cluster orientation tasks.
翻译:非线性维度减少(NLDR)方法,如在自然科学中多分布式相邻嵌入(t-SNE),在自然科学中无处不在,然而,由于这些方法复杂的参数化,这些方法的恰当使用是困难的;分析师必须作出权衡,以便确定全国民联技术的可视化结构。我们通过将这些方法与一种称为巡演的技术结合起来,对全国民联方法的实际使用进行视觉诊断。参观是对多变量数据跨线投射到一个低维空间的序列。该序列显示为动态直观化,使用户能够看到低维观所投的高维数据影子。通过将巡视与全国民联的观点联系起来,我们可以维护全球结构,并通过用户互动,如全国民联的观点可能会误导的地方进行连线刷观察。我们展示了从模拟和单细胞定型中得出的若干案例研究,显示我们的方法对于集群定向任务很有用。