Helmholtz decompositions of elastic fields is a common approach for the solution of Navier scattering problems. Used in the context of Boundary Integral Equations (BIE), this approach affords solutions of Navier problems via the simpler Helmholtz boundary integral operators (BIOs). Approximations of Helmholtz Dirichlet-to-Neumann (DtN) can be employed within a regularizing combined field strategy to deliver BIE formulations of the second kind for the solution of Navier scattering problems in two dimensions with Dirichlet boundary conditions, at least in the case of smooth boundaries. Unlike the case of scattering and transmission Helmholtz problems, the approximations of the DtN maps we use in the Helmholtz decomposition BIE in the Navier case require incorporation of lower order terms in their pseudodifferential asymptotic expansions. The presence of these lower order terms in the Navier regularized BIE formulations complicates the stability analysis of their Nystr\"om discretizations in the framework of global trigonometric interpolation and the Kussmaul-Martensen kernel singularity splitting strategy. The main difficulty stems from compositions of pseudodifferential operators of opposite orders, whose Nystr\"om discretization must be performed with care via pseudodifferential expansions beyond the principal symbol. The error analysis is significantly simpler in the case of arclength boundary parametrizations and considerably more involved in the case of general smooth parametrizations which are typically encountered in the description of one dimensional closed curves.
翻译:暂无翻译