The impossibility of creating perfect identical copies of unknown quantum systems is a fundamental concept in quantum theory and one of the main non-classical properties of quantum information. This limitation imposed by quantum mechanics, famously known as the no-cloning theorem, has played a central role in quantum cryptography as a key component in the security of quantum protocols. In this thesis, we look at Unclonability in a broader context in physics and computer science and more specifically through the lens of cryptography, learnability and hardware assumptions. We introduce new notions of unclonability in the quantum world, namely quantum physical unclonability, and study the relationship with cryptographic properties and assumptions such as unforgeability, and quantum pseudorandomness. The purpose of this study is to bring new insights into the field of quantum cryptanalysis and into the notion of unclonability itself. We also discuss several applications of this new type of unclonability as a cryptographic resource for designing provably secure quantum protocols. Furthermore, we present a new practical cryptanalysis technique concerning the problem of approximate cloning of quantum states. We design a quantum machine learning-based cryptanalysis algorithm to demonstrate the power of quantum learning tools as both attack strategies and powerful tools for the practical study of quantum unclonability.
翻译:无法创建未知量子系统的完全相同副本是量子理论中的一个基本概念,也是量子信息的主要非古典特性之一。量子力学所施加的这种限制在量子加密中起到了核心作用,作为量子协议安全的关键组成部分。在这个论文中,我们从物理学和计算机科学的更广泛角度,更具体地通过加密学、可学性和硬件假设的视角,来审视不可调离性。我们引入了量子世界中不可调离性的新概念,即量子物理不易调和,并研究与不可调和性等加密特性和假设的关系。我们研究的目的是为量子加密分析领域和不可调离析性概念本身带来新的洞察力。我们还讨论了这种新型不调离性作为一种加密资源的几种应用,用于设计可调密可靠的量子协议。此外,我们提出了一种新的实用加密分析技术,即量子物理不易变,研究与不可调和量子假设的关系,例如不可调等。我们设计了量子特性特性特性的特性和假设性。我们设计了一种实用的量子机能分析策略,用于学习以工具为基础的量子攻击工具的量子分析。我们研究,以研究,以研究,以研究以量子力制的量子研究,以研究,以研究。