This article provides the motivation and overview of the Collective Knowledge framework (CK or cKnowledge). The CK concept is to decompose research projects into reusable components that encapsulate research artifacts and provide unified application programming interfaces (APIs), command-line interfaces (CLIs), meta descriptions and common automation actions for related artifacts. The CK framework is used to organize and manage research projects as a database of such components. Inspired by the USB "plug and play" approach for hardware, CK also helps to assemble portable workflows that can automatically plug in compatible components from different users and vendors (models, datasets, frameworks, compilers, tools). Such workflows can build and run algorithms on different platforms and environments in a unified way using the universal CK program pipeline with software detection plugins and the automatic installation of missing packages. This article presents a number of industrial projects in which the modular CK approach was successfully validated in order to automate benchmarking, auto-tuning and co-design of efficient software and hardware for machine learning (ML) and artificial intelligence (AI) in terms of speed, accuracy, energy, size and various costs. The CK framework also helped to automate the artifact evaluation process at several computer science conferences as well as to make it easier to reproduce, compare and reuse research techniques from published papers, deploy them in production, and automatically adapt them to continuously changing datasets, models and systems. The long-term goal is to accelerate innovation by connecting researchers and practitioners to share and reuse all their knowledge, best practices, artifacts, workflows and experimental results in a common, portable and reproducible format at https://cKnowledge.io .


翻译:本篇文章提供了集体知识框架(CK或Cnowledge)的动力和概览。CK概念是将研究项目分解成可重新使用的组件,这些组件包括研究文物,并提供统一的应用程序编程接口(APIs)、指令-线接口(CLIs)、元描述和相关艺术品的共同自动化行动。CK框架用于组织和管理作为这些组成部分数据库的研究项目。在USB硬件“插头和游戏”方法的启发下,CK还帮助装配便携式工作流程,这些工作流程可以自动插入不同用户和供应商(模型、数据集、框架、编译员、汇编员、工具)的兼容组件(模型、数据集、框架、编译员和工具)的兼容组件。这些工作流程可以统一地在不同平台和环境上建立和运行算法,使用通用的CK程序管道,使用软件检测插件和自动安装缺失的软件包。本文章介绍了一些工业项目,模块CK方法得到了成功验证,以便实现自动化基准、自动调整和共同配置的软件和硬件,用于机器学习(ML)和人工智能智能(AI),其速度、精度、精度、精度、精度、精度、精度、体、规模和速度、规模和速度比力和速度化等数据格式化文件的流程框架,还有助于在不断更新过程中,在不断更新的流程中,在不断更新的流程中,在不断更新过程中,将最佳的流程和再利用中,将最佳的流程和再利用中,在不断进的流程中,将最佳的流程和再利用。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员