In reliability and life data analysis, the Weibull distribution is widely used to accommodate more data characteristics by changing the values of the parameters. We frequently observe many zeros or close to zero data points in reliability and life testing experiments. We call this phenomenon a nearly instantaneous failure. Many researchers modified the commonly used univariate parametric models such as exponential, gamma, Weibull, and log-normal distributions to appropriately fit such data having instantaneous failure observations. Researchers also find bivariate correlated life testing data having many observations near a particular point while the remaining observations follow some continuous distribution. This situation defines as responses having early failures for such bivariate responses. If the point is the origin, then we call the situation a nearly instantaneous failure for the responses. Here, we propose a modified bivariate Weibull distribution that allows early failure by combining bivariate uniform distribution and bivariate Weibull distribution. The bivariate Weibull distribution is constructed using a 2-dimensional copula, assuming the marginal distributions as two parametric Weibull distributions. We derive some properties of that modified bivariate Weibull distribution, mainly the joint probability density function, the survival (reliability) function, and the hazard (failure rate) function. The model's unknown parameters are estimated using the Maximum Likelihood Estimation (MLE) technique combined with a machine learning clustering algorithm. Numerical examples are provided using simulated data to illustrate and test the performance of the proposed methodologies. The method is also applied to real data and compared with existing approaches to model such data in the literature.
翻译:在可靠性和生命数据分析中,Weibull的分布被广泛用来通过改变参数值来容纳更多的数据特性。我们经常在可靠性和生命测试实验中观察到许多零或接近零点的数据点。我们称这种现象为几乎瞬间失灵。许多研究人员修改了常用的单方对数参数模型,如指数、伽马、Weibull和日志正常分布,以适当匹配具有瞬时故障观测的数据。研究人员还发现双变量相关生命测试数据,在某个特定点附近有许多观测,而其余的观测则遵循某些连续分布。这种情况定义了这种双变量反应早期失败的响应。如果该点是源,那么我们称这种情况几乎是瞬间发生。我们在这里建议修改的双变量 Weibarite 参数分布,以便通过将双变量统一分布和正数 Weiburbull分布结合起来,从而允许早期失败。bivariate Weibul的分布是使用一个2维度模型,假设边际分布是两个参数。我们用比值数据分布来定义这些二维差的数值。我们用该二元的数值的数值排序的数值来计算数据属性的属性的特性的特性的特性的特性, 和数值的数值的数值的数值分布主要是密度的数值的数值的数值的数值的数值的计算法值的数值值的数值的计算函数的计算法值的计算法值的计算。