Systematic development of accurate density functionals has been a decades-long challenge for scientists. Despite the emerging application of machine learning (ML) in approximating functionals, the resulting ML functionals usually contain more than tens of thousands parameters, which makes a huge gap in the formulation with the conventional human-designed symbolic functionals. We propose a new framework, Symbolic Functional Evolutionary Search (SyFES), that automatically constructs accurate functionals in the symbolic form, which is more explainable to humans, cheaper to evaluate, and easier to integrate to existing density functional theory codes than other ML functionals. We first show that without prior knowledge, SyFES reconstructed a known functional from scratch. We then demonstrate that evolving from an existing functional $\omega$B97M-V, SyFES found a new functional, GAS22 (Google Accelerated Science 22), that performs better for the majority of molecular types in the test set of Main Group Chemistry Database (MGCDB84). Our framework opens a new direction in leveraging computing power for the systematic development of symbolic density functionals.
翻译:精确密度功能的系统发展对科学家来说是一个长达数十年的挑战。尽管机械学习(ML)在接近功能方面应用了近似功能,但由此产生的ML功能通常包含数万个参数,这在与传统人类设计的象征性功能的配制方面造成了巨大的差距。我们提议了一个新的框架,即符号功能进化搜索(SyFES),它自动以象征形式构建准确的功能,它对人类来说更易解释,评估成本更低,比其他 ML 功能更容易融入现有密度功能理论代码。我们首先显示,SyFES在没有事先知识的情况下,从零开始重建了已知功能。我们然后表明,SyFES从现有的功能$\omega$B97M-V中发现一种新的功能,GAS22(Gogle Gogle 加速科学 22),它对主组化学数据库(MGCDB84)的测试组中的大多数分子类型表现更好。我们的框架开启了利用计算能力系统开发符号密度功能的新方向。