Multi-legged robots offer enhanced stability to navigate complex terrains with their multiple legs interacting with the environment. However, how to effectively coordinate the multiple legs in a larger action exploration space to generate natural and robust movements is a key issue. In this paper, we introduce a motion prior-based approach, successfully applying deep reinforcement learning algorithms to a real hexapod robot. We generate a dataset of optimized motion priors, and train an adversarial discriminator based on the priors to guide the hexapod robot to learn natural gaits. The learned policy is then successfully transferred to a real hexapod robot, and demonstrate natural gait patterns and remarkable robustness without visual information in complex terrains. This is the first time that a reinforcement learning controller has been used to achieve complex terrain walking on a real hexapod robot.
翻译:多足机器人凭借其多腿与环境交互的特性,在复杂地形导航中展现出更强的稳定性。然而,如何在更大的动作探索空间中有效协调多条腿以生成自然且鲁棒的运动,仍是一个关键问题。本文提出一种基于运动先验的方法,成功将深度强化学习算法应用于真实六足机器人。我们生成了一组优化的运动先验数据集,并基于这些先验训练对抗判别器,以引导六足机器人学习自然步态。学习得到的策略随后成功迁移至真实六足机器人,在无视觉信息的复杂地形中展现出自然的步态模式和显著的鲁棒性。这是首次通过强化学习控制器实现真实六足机器人在复杂地形上的行走。