Modern intelligent systems researchers form hypotheses about system behavior and then run experiments using one or more independent variables to test their hypotheses. We present SIERRA, a novel framework structured around that idea for accelerating research development and improving reproducibility of results. SIERRA accelerates research by automating the process of generating executable experiments from queries over independent variables(s), executing experiments, and processing the results to generate deliverables such as graphs and videos. It shifts the paradigm for testing hypotheses from procedural ("Do these steps to answer the query") to declarative ("Here is the query to test--GO!"), reducing the burden on researchers. It employs a modular architecture enabling easy customization and extension for the needs of individual researchers, thereby eliminating manual configuration and processing via throw-away scripts. SIERRA improves reproducibility of research by providing automation independent of the execution environment (HPC hardware, real robots, etc.) and targeted platform (arbitrary simulator or real robots). This enables exact experiment replication, up to the limit of the execution environment and platform, as well as making it easy for researchers to test hypotheses in different computational environments.
翻译:现代智能系统研究人员对系统行为进行假设,然后使用一个或多个独立的变量进行实验,以测试其假设。我们介绍了Sierra,这是一个围绕加速研究开发和改进成果再生的理念构建的新框架。SIERRA通过对独立变量的查询进行自动生成可执行的实验过程来加速研究,执行实验,处理结果以产生可交付成果,如图表和视频。它把测试假设的范式从程序(“这些步骤回答查询”)转向声明性(“这是对测试-GO的查询! ”), 减轻研究人员的负担。它使用一个模块式结构,为个体研究人员的需求提供方便的定制和扩展,从而通过丢弃脚本消除手工配置和处理。 Sierra通过提供独立于执行环境的自动化( HPC 硬件、 真实机器人等) 以及目标平台( 任意模拟器或真实机器人 ) 来改进研究的可复制性。 它使得精确的实验复制, 达到执行环境和平台的极限, 使研究人员更容易在不同的计算环境中进行测试。