Electric vehicles are a central component of future mobility systems as they promise to reduce local noxious and fine dust emissions and CO2 emissions, if fed by clean energy sources. However, the adoption of electric vehicles so far fell short of expectations despite significant governmental incentives. One reason for this slow adoption is the drivers' perceived range anxiety, especially for individually owned vehicles. Here, bad user-experiences, e.g., conventional cars blocking charging stations or inconsistent real-time availability data, manifest the drivers' range anxiety. Against this background, we study stochastic search algorithms, that can be readily deployed in today's navigation systems in order to minimize detours to reach an available charging station. We model such a search as a finite horizon Markov decision process and present a comprehensive framework that considers different problem variants, speed-up techniques, and three solution algorithms: an exact labeling algorithm, a heuristic labeling algorithm, and a rollout algorithm. Extensive numerical studies show that our algorithms significantly decrease the expected time to find a free charging station while increasing the solution quality robustness and the likelihood that a search is successful compared to myopic approaches.


翻译:电动车辆是未来机动系统的核心组成部分,因为它们承诺减少当地有毒和细灰尘排放和二氧化碳排放,如果由清洁能源提供的话。然而,尽管政府采取了大量奖励措施,但电动车辆的采用迄今没有达到预期值。这种缓慢采用的原因之一是驾驶员对范围感到焦虑,特别是对个人拥有的车辆而言。这里,用户经验差,例如常规汽车堵塞充电站或不连贯的实时可用数据,显示了驾驶员的焦虑范围。在这个背景下,我们研究可轻易地在当今导航系统中部署的随机搜索算法,以便尽可能减少绕行到一个可用的充电站。我们将这种搜索作为固定视野马尔科夫决策过程的模式,并提出一个考虑各种问题变异、加速技术和三种解决方案算法的综合框架:精确的标签算法、超常标签算法和推出算法。广泛的数字研究表明,我们的算法大大缩短了寻找免费充电站的预期时间,同时提高解决办法的质量,并且比近视方法成功的可能性。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
44+阅读 · 2020年10月31日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
0+阅读 · 2021年1月20日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员