We consider fluid flow across a permeable interface within a deformable porous medium. We use mixture theory. The mixture's constituents are assumed to be incompressible in their pure form. We use Hamilton's principle to obtain the governing equations, and we propose a corresponding finite element implementation. The filtration velocity and the pore pressure are allowed to be discontinuous across the interface while some control of these discontinuities is built into the interfacial constitutive behavior. To facilitate the practical implementation of the formulation in a finite element scheme, we introduce a Lagrange multiplier field over the interface for the explicit enforcement of the jump condition of the balance of mass. Our formulation appears to recover some basic results from the literature. The novelty of the work is the formulation of an approach that can accommodate specific constitutive assumptions pertaining to the behavior of the interface that do not necessarily imply the continuity of the filtration velocity and/or of the pore pressure across it.


翻译:我们考虑可变形多孔介质中流体穿过可渗透界面的流动问题。我们采用混合物理论,并假设混合物各组分在其纯态下是不可压缩的。我们应用哈密顿原理推导控制方程,并提出相应的有限元实现方案。在该方法中,过滤速度和孔隙压力允许在界面处不连续,同时通过界面的本构行为对这些不连续性施加一定控制。为了便于该公式在有限元方案中的实际实现,我们在界面上引入了一个拉格朗日乘子场,用于显式地强制执行质量平衡的跳跃条件。我们的公式能够复现文献中的一些基本结果。本工作的创新之处在于提出了一种能够容纳特定界面本构假设的公式化方法,这些假设并不必然要求过滤速度和/或孔隙压力在界面处连续。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员