Avoiding collisions is the core problem in multi-agent navigation. In decentralized settings, when agents have limited communication and sensory capabilities, collisions are typically avoided in a reactive fashion, relying on local observations/communications. Prominent collision avoidance techniques, e.g. ORCA, are computationally efficient and scale well to a large number of agents. However, in numerous scenarios, involving navigation through the tight passages or confined spaces, deadlocks are likely to occur due to the egoistic behaviour of the agents and as a result, the latter can not achieve their goals. To this end, we suggest an application of the locally confined multi-agent path finding (MAPF) solvers that coordinate sub-groups of the agents that appear to be in a deadlock (to detect the latter we suggest a simple, yet efficient ad-hoc routine). We present a way to build a grid-based MAPF instance, typically required by modern MAPF solvers. We evaluate two of them in our experiments, i.e. Push and Rotate and a bounded-suboptimal version of Conflict Based Search (ECBS), and show that their inclusion into the navigation pipeline significantly increases the success rate, from 15% to 99% in certain cases.


翻译:避免碰撞是多试剂航行的核心问题。在分散的环境下,当试剂通信和感官能力有限时,通常依靠当地观测/通信,以被动反应的方式避免碰撞。显著的避免碰撞技术,如ORCA,在计算上效率很高,规模也很大,适用于大量试剂。然而,在涉及通过紧闭通道或封闭空间进行导航的多种情况下,由于代理人的自我行为,可能会出现僵局,结果后者无法实现其目标。为此,我们建议采用当地限制的多试剂发现(MAPF)解答器,以协调似乎陷入僵局的试剂分组(我们提出采用后者,我们提出一种简单但有效的自动例行程序)。我们提出了一种办法,在现代MAPF解答器通常要求的基于网格的MAPF实例。我们实验中评估了其中两种办法,即推动和旋转,以及冲突搜索(ECBS)的捆绑式次版本。我们建议应用这些办法来协调似乎陷入僵局的多试探(MAPF)的多试探(MAPF)解(MAPF)解(M)解解解器,并显示它们被纳入到某些导航中的成功率15率。我们明显提高了一定的成功率。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员