Peacefulness is a principal dimension of well-being for all humankind and is the way out of inequity and every single form of violence. Thus, its measurement has lately drawn the attention of researchers and policy-makers. During the last years, novel digital data streams have drastically changed the research in this field. In the current study, we exploit information extracted from Global Data on Events, Location, and Tone (GDELT) digital news database, to capture peacefulness through the Global Peace Index (GPI). Applying predictive machine learning models, we demonstrate that news media attention from GDELT can be used as a proxy for measuring GPI at a monthly level. Additionally, we use the SHAP methodology to obtain the most important variables that drive the predictions. This analysis highlights each country's profile and provides explanations for the predictions overall, and particularly for the errors and the events that drive these errors. We believe that digital data exploited by Social Good researchers, policy-makers, and peace-builders, with data science tools as powerful as machine learning, could contribute to maximize the societal benefits and minimize the risks to peacefulness.


翻译:和平是全人类福祉的一个主要方面,也是摆脱不平等和各种暴力形式的途径。因此,衡量和平是最近引起研究人员和决策者注意的。在过去几年里,新的数字数据流极大地改变了这一领域的研究。在目前的研究中,我们利用从全球事件、地点和托恩(GDELT)数字新闻数据库中提取的信息,通过全球和平指数(GPI)捕捉和平。应用预测机器学习模型,我们证明GDELT的新闻媒体关注可以用作每月测量GPI的代用工具。此外,我们利用SHAP方法获取驱动预测的最重要变量。这一分析突出了每个国家的概况,并为总体预测提供了解释,特别是造成这些错误的错误和事件。我们认为,社会友好研究人员、决策者和建设和平者利用的数字数据数据,以及像机器学习一样强大的数据科学工具,可以有助于最大限度地增加社会效益和尽量减少和平风险。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
10+阅读 · 2018年2月9日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员