Depth completion aims at predicting dense pixel-wise depth from a sparse map captured from a depth sensor. It plays an essential role in various applications such as autonomous driving, 3D reconstruction, augmented reality, and robot navigation. Recent successes on the task have been demonstrated and dominated by deep learning based solutions. In this article, for the first time, we provide a comprehensive literature review that helps readers better grasp the research trends and clearly understand the current advances. We investigate the related studies from the design aspects of network architectures, loss functions, benchmark datasets, and learning strategies with a proposal of a novel taxonomy that categorizes existing methods. Besides, we present a quantitative comparison of model performance on two widely used benchmark datasets, including an indoor and an outdoor dataset. Finally, we discuss the challenges of prior works and provide readers with some insights for future research directions.
翻译:深度完成的目的是从深度传感器所捕捉的稀少地图上预测密密密的像素深度。 它在自主驱动、3D重建、增强现实和机器人导航等各种应用中发挥着关键作用。 最近在这项任务上取得了成功,并得到了深层学习解决方案的主导。 在本条中,我们首次提供了全面的文献审查,帮助读者更好地掌握研究趋势并清楚地了解当前进展。 我们从网络结构的设计方面、损失功能、基准数据集和学习战略中调查相关研究,并提出了对现有方法进行分类的新颖分类的建议。 此外,我们还对两种广泛使用的基准数据集的模型性能进行了定量比较,包括室内和室外数据集。 最后,我们讨论了先前工作的挑战,并为读者提供了未来研究方向的一些见解。