In the 1960s, Schroeder and Logan introduced delay line-based allpass filters, which are still popular due to their computational efficiency and versatile applicability in artificial reverberation, decorrelation, and dispersive system design. In this work, we extend the theory of allpass systems to any arbitrary connection of delay lines, namely feedback delay networks (FDNs). We present a characterization of uniallpass FDNs, i.e., FDNs, which are allpass for an arbitrary choice of delays. Further, we develop a solution to the completion problem, i.e., given an FDN feedback matrix to determine the remaining gain parameters such that the FDN is allpass. Particularly useful for the completion problem are feedback matrices, which yield a homogeneous decay of all system modes. Finally, we apply the uniallpass characterization to previous FDN designs, namely, Schroeder's series allpass and Gardner's nested allpass for single-input, single-output systems, and, Poletti's unitary reverberator for multi-input, multi-output systems and demonstrate the significant extension of the design space.
翻译:1960年代,Schroeder和Logan引入了基于延时线的全流过滤器,由于这些过滤器的计算效率和在人工回溯、装饰和分散式系统设计中的多功能性应用,这些过滤器仍然很受欢迎。在这项工作中,我们将全流系统理论扩展到任何任意的延时线连接,即反馈延迟网络(FDNs),我们对前FDN设计采用了不单流式描述,即FDNs,它们都是任意选择延迟的通道。此外,我们开发了完成问题的解决办法,即FDN反馈矩阵,以确定其余的增益参数,使FDN成为全流。对于完成问题特别有用的是反馈矩阵,它导致所有系统模式的同质衰减。最后,我们对FDN以前的设计,即Schroeder的Allpass和Gardeard Gardels的嵌入式全流, 用于单投、单投放系统,以及Poletti的空间设计重大扩展系统。