In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, emerged as a powerful tool for machine learning with graphs and relational data. Here, we give a comprehensive overview of the algorithm's use in a machine learning setting, focusing on the supervised regime. We discuss the theoretical background, show how to use it for supervised graph- and node representation learning, discuss recent extensions, and outline the algorithm's connection to (permutation-)equivariant neural architectures. Moreover, we give an overview of current applications and future directions to stimulate further research.
翻译:近年来,基于Weisfeiler-Leman算法的算法和神经结构 — — 以图象形态问题为名的超自然法论 — — 的算法和神经结构 — — 成为利用图表和关联数据进行机器学习的有力工具。在这里,我们全面概述了算法在机器学习环境中的使用情况,重点是监管制度。我们讨论了理论背景,展示了如何将算法用于监督的图形和节点表达学习,讨论了最近的扩展,并概述了算法与(平衡-)等异性神经结构的联系。此外,我们概述了当前应用和未来方向,以刺激进一步的研究。