We present the TherapyView, a demonstration system to help therapists visualize the dynamic contents of past treatment sessions, enabled by the state-of-the-art neural topic modeling techniques to analyze the topical tendencies of various psychiatric conditions and deep learning-based image generation engine to provide a visual summary. The system incorporates temporal modeling to provide a time-series representation of topic similarities at a turn-level resolution and AI-generated artworks given the dialogue segments to provide a concise representations of the contents covered in the session, offering interpretable insights for therapists to optimize their strategies and enhance the effectiveness of psychotherapy. This system provides a proof of concept of AI-augmented therapy tools with e in-depth understanding of the patient's mental state and enabling more effective treatment.


翻译:我们展示了“治疗观察”这个示范系统,帮助治疗师对以往治疗过程的动态内容进行视觉分析,该系统借助于最新神经学专题模型技术,分析各种精神状况的热门趋势,以及深刻学习的图像生成引擎,以提供视觉摘要;该系统包括时间模型,以在转折层次的分辨率上提供时间序列的相似性;以及AI产生的艺术作品,因为对话部分可以提供对治疗过程内容的简明描述,为治疗师提供可解释的洞见,以优化其战略并提高心理治疗的有效性;该系统提供了对病人精神状态有深入电子理解的人工强化治疗工具概念的证明,并使更有效的治疗成为可能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员