Graph Neural Networks (GNNs) have become increasingly ubiquitous in numerous applications and systems, necessitating explanations of their predictions, especially when making critical decisions. However, explaining GNNs is challenging due to the complexity of graph data and model execution. Despite additional computational costs, post-hoc explanation approaches have been widely adopted due to the generality of their architectures. Intrinsically interpretable models provide instant explanations but are usually model-specific, which can only explain particular GNNs. Therefore, we propose a novel GNN explanation framework named SCALE, which is general and fast for explaining predictions. SCALE trains multiple specialty learners to explain GNNs since constructing one powerful explainer to examine attributions of interactions in input graphs is complicated. In training, a black-box GNN model guides learners based on an online knowledge distillation paradigm. In the explanation phase, explanations of predictions are provided by multiple explainers corresponding to trained learners. Specifically, edge masking and random walk with restart procedures are executed to provide structural explanations for graph-level and node-level predictions, respectively. A feature attribution module provides overall summaries and instance-level feature contributions. We compare SCALE with state-of-the-art baselines via quantitative and qualitative experiments to prove its explanation correctness and execution performance. We also conduct a series of ablation studies to understand the strengths and weaknesses of the proposed framework.


翻译:尽管计算成本增加,但热后解释方法因其结构的广度而被广泛采用。内在解释性模型提供即时解释,但通常只有模型,只能解释特定的GNN。因此,我们提议一个名为SCALE的新型GNN解释框架,用于解释预测,这个框架是通用的和快速的,用于解释预测。SCALE培训多个专业学习者解释GNNs,因为建造一个强大的解释器来审查投入图中的互动属性,这是很复杂的。在培训中,一个黑盒GNNN模型指导学习者以在线知识蒸馏范式为基础。在解释阶段,预测的解释由多个解释员提供与受过训练的学习者相应的解释。具体来说,用边际掩码和随机行走来解释,用来为图表级别和节点预测提供结构性解释。SARLE培训多专业学习者,因为建造了一个强大的解释器解释器来审查输入图中的互动属性和模型的属性。我们用SLA级分析模型来比较其业绩和定性系列。我们用SLE的特征分析模型来提供总体总结和定量解释。我们用SAL的模型来比较其质量解释。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2021年12月2日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员