This paper proposes a new Jacobian-based inverse kinematics (IK) explicitly considering box-constrained joint space. To control humanoid robots, the reference pose of end effector(s) is planned in task space, then mapped into the reference joints by IK. Due to the limited analytical solutions for IK, iterative numerical IK solvers based on Jacobian between task and joint spaces have become popular. However, the conventional Jacobian-based IK does not explicitly consider the joint constraints, and therefore, they usually clamp the obtained joints during iteration according to the constraints in practice. The problem in clamping operation has been pointed out that it causes numerical instability due to non-smoothed objective function. To alleviate the clamping problem, this study explicitly considers the joint constraints, especially the box constraints in this paper, inside the new IK solver. Specifically, instead of clamping, a mirror descent (MD) method with box-constrained real joint space and no-constrained mirror space is integrated with the conventional Jacobian-based IK methods, so-called MD-IK. In addition, to escape local optima nearly on the boundaries of constraints, a heuristic technique, called $\epsilon$-clamping, is implemented as margin in software level. As a result, MD-IK achieved more stable and enough fast i) regulation on the random reference poses and ii) tracking to the random trajectories compared to the conventional IK solvers.


翻译:本文提出了一个新的基于雅各布的反动运动学( IK ), 明确考虑受框限制的联合空间。 为了控制人体机器人, 在任务空间中计划终端效应的参考构成, 然后绘制到 IK 的参照点。 由于基于雅各布的任务和联合空间之间的迭代数字 IK 解答器的分析解决方案有限, 已经变得很受欢迎。 但是, 传统的雅各布的 IK 没有明确考虑联合限制, 因此, 它们通常会根据实际的限制因素在迭代过程中将所获得的接合点夹住。 压缩操作的问题已经指出, 最终效应的参考面在任务空间中造成数字不稳定, 然后被映入 IK 的参考点。 为了缓解紧要的问题, 本研究明确考虑了基于雅各布的任务和联合空间之间的迭代数字的迭代数字 IK 解答题中的共同限制, 具体地说, 以箱控制的真正联合空间和不受限制的反射镜空间, 通常与基于雅各布的常规方法结合, 所谓的MD- IK 的参考点。 此外,,, 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Arxiv
0+阅读 · 2021年3月14日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Top
微信扫码咨询专知VIP会员