Deep forest is a non-differentiable deep model which has achieved impressive empirical success across a wide variety of applications, especially on categorical/symbolic or mixed modeling tasks. Many of the application fields prefer explainable models, such as random forests with feature contributions that can provide local explanation for each prediction, and Mean Decrease Impurity (MDI) that can provide global feature importance. However, deep forest, as a cascade of random forests, possesses interpretability only at the first layer. From the second layer on, many of the tree splits occur on the new features generated by the previous layer, which makes existing explanatory tools for random forests inapplicable. To disclose the impact of the original features in the deep layers, we design a calculation method with an estimation step followed by a calibration step for each layer, and propose our feature contribution and MDI feature importance calculation tools for deep forest. Experimental results on both simulated data and real world data verify the effectiveness of our methods.


翻译:- 通过特征贡献和MDI特征重要性解释深度森林 翻译后的摘要: 深度森林是一种非可微的深度模型,在许多应用领域,特别是分类/符号或混合建模任务中,取得了显著的实证成功。许多应用领域更喜欢可解释的模型,如可以为每个预测提供局部解释的特征贡献的随机森林,以及可以提供全局特征重要性的Mean Decrease Impurity(MDI)。但是,深度森林作为一个级联的随机森林,仅具有第一层的可解释性。从第二层开始,许多树分裂发生在上一层生成的新特征上,这使得现有的随机森林解释工具不适用于深度森林。为了揭示深层次中原始特征的影响,我们设计了一种计算方法,包括每个层的估计步骤和校准步骤,并提出了我们的特征贡献和MDI特征重要性计算工具。基于模拟数据和真实数据的实验结果验证了我们方法的有效性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员