This paper develops a continuous functional framework for treatment effects propagating through geographic space and economic networks. We derive a master equation from three independent economic foundations -- heterogeneous agent aggregation, market equilibrium, and cost minimization -- establishing that the framework rests on fundamental principles rather than ad hoc specifications. The framework nests conventional econometric models -- autoregressive specifications, spatial autoregressive models, and network treatment effect models -- as special cases, providing a bridge between discrete and continuous methods. A key theoretical result shows that the spatial-network interaction coefficient equals the mutual information between geographic and network coordinates, providing a parameter-free measure of channel complementarity. The Feynman-Kac representation characterizes treatment effects as accumulated policy exposure along stochastic paths representing economic linkages, connecting the continuous framework to event study methodology. The no-spillover case emerges as a testable restriction, creating a one-sided risk profile where correct inference is maintained regardless of whether spillovers exist. Monte Carlo simulations confirm that conventional estimators exhibit 25-38% bias when spillovers are present, while our estimator maintains correct inference across all configurations including the no-spillover case.


翻译:本文发展了一个连续泛函框架,用于分析通过地理空间和经济网络传播的处理效应。我们从三个独立的经济学基础——异质性主体加总、市场均衡与成本最小化——推导出主方程,证明该框架建立在基本原理之上而非特设设定。该框架将传统计量经济学模型——自回归设定、空间自回归模型和网络处理效应模型——作为特例嵌套其中,从而在离散与连续方法之间架起桥梁。一个关键的理论结果表明,空间-网络交互系数等于地理坐标与网络坐标之间的互信息,这为渠道互补性提供了一种无参数的度量方式。费曼-卡茨表示将处理效应刻画为沿代表经济联系的随机路径累积的政策暴露,从而将连续框架与事件研究方法联系起来。无溢出情形可作为可检验的约束条件出现,形成一种单边风险特征:无论溢出效应是否存在,都能保持正确的统计推断。蒙特卡洛模拟证实,当存在溢出效应时,传统估计量会出现25-38%的偏差,而我们的估计量在所有配置(包括无溢出情形)下均能保持正确的推断。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
专知会员服务
20+阅读 · 2020年12月9日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
专知会员服务
20+阅读 · 2020年12月9日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员