Vehicular Public Key Infrastructure (VPKI) plays a vital role in ensuring secure and privacy-preserving communication in vehicular ad hoc networks (VANETs). However, current VPKI architectures face significant challenges in terms of scalability, resilience, and privacy preservation. This paper proposes a novel threshold-based VPKI architecture to overcome these limitations. Leveraging a Schnorr threshold signature scheme based on elliptic curve cryptography, the proposed architecture eliminates the reliance on individual certificate authorities (CAs) and distributes trust among multiple CAs in a threshold certificate signing approach. This enhances resilience and mitigates the single point-of-failure vulnerability. The architecture also addresses sybil-based misbehaviors through a time-restrictive pseudonym design that eliminates multiple simultaneous use of pseudonyms. Furthermore, the scheme reduces the size and latency of Certificate Revocation List (CRL) distribution by clustering multiple CAs in a threshold setting and adopting a region-specific CRL. The paper presents detailed analysis of the security, privacy and performance benefits of the proposed architecture. Results from the performance evaluation shows the improved resiliency, reduced handover rates, and better scalability potential of the proposed threshold-based VPKI architecture compared to existing techniques. The proposed threshold-based VPKI holds great promise in ensuring secure and privacy-preserving communication in VANETs, paving the way for safer and more efficient vehicular networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月26日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
13+阅读 · 2018年1月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员