Process tomography, the experimental characterization of physical processes, is a central task in science and engineering. Here we investigate the axiomatic requirements that guarantee the in-principle feasibility of process tomography in general physical theories. Specifically, we explore the requirement that process tomography should be achievable with a finite number of auxiliary systems and with a finite number of input states. We show that this requirement is satisfied in every theory equipped with universal extensions, that is, correlated states from which all other correlations can be generated locally with non-zero probability. We show that universal extensions are guaranteed to exist in two cases: (1) theories permitting conclusive state teleportation, and (2) theories satisfying three properties of Causality, Pure Product States, and Purification. In case (2), the existence of universal extensions follows from a symmetry property of Purification, whereby all pure bipartite states with the same marginal on one system are locally interconvertible. Crucially, our results hold even in theories that do not satisfy Local Tomography, the property that the state of any composite system can be identified from the correlations of local measurements. Summarizing, the existence of universal extensions, without any additional requirement of Local Tomography, is a sufficient guarantee for the characterizability of physical processes using a finite number of auxiliary systems.


翻译:物理过程的实验性剖析过程,即物理过程的实验性定性,是科学和工程的一项核心任务。在这里,我们调查了在一般物理理论中保证过程剖析过程在原则上的可行性的逻辑要求。具体地说,我们探索了这样一种要求,即过程剖析过程应当能够以数量有限的辅助系统和数量有限的输入状态来实现。我们表明,在配备通用扩展的每一个理论中,即相关状态,所有其他相关性都可以在当地产生,而非零概率。我们证明,在两种情况下,普遍扩展是可以保证存在的:(1) 允许最终状态传导的理论,和(2) 满足Causality、纯产品国家和纯化三种特性的理论。在情况中,(2) 普遍扩展是来自纯化的对称属性,即同一系统中具有相同边际的所有纯两边邦都是可互换的,也就是说,我们的结果甚至存在于不满足本地地形学的理论中,任何复合系统的状况都可以从地方测量的相互关系中确定。解析,使用充分的物理扩展的特性的存在,而没有附加的固定的物理特性。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
0+阅读 · 2021年12月22日
Arxiv
11+阅读 · 2021年3月25日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员