The resolution of the Poisson equation is usually one of the most computationally intensive steps for incompressible fluid solvers. Lately, Deep Learning, and especially Convolutional Neural Networks (CNN), has been introduced to solve this equation, leading to significant inference time reduction at the cost of a lack of guarantee on the accuracy of the solution. This drawback might lead to inaccuracies and potentially unstable simulations. It also makes impossible a fair assessment of the CNN speedup, for instance, when changing the network architecture, since evaluated at different error levels. To circumvent this issue, a hybrid strategy is developed, which couples a CNN with a traditional iterative solver to ensure a user-defined accuracy level. The CNN hybrid method is tested on two flow cases, consisting of a variable-density plume with and without obstacles, demostrating remarkable generalization capabilities, ensuring both the accuracy and stability of the simulations. The error distribution of the predictions using several network architectures is further investigated. Results show that the threshold of the hybrid strategy defined as the mean divergence of the velocity field is ensuring a consistent physical behavior of the CNN-based hybrid computational strategy. This strategy allows a systematic evaluation of the CNN performance at the same accuracy level for various network architectures. In particular, the importance of incorporating multiple scales in the network architecture is demonstrated, since improving both the accuracy and the inference performance compared with feedforward CNN architectures, as these networks can provide solutions 1 10-25 faster than traditional iterative solvers.


翻译:Poisson 方程式的解析通常是无法压缩的流体溶液的计算最密集的步骤之一。 最近,深度学习,特别是进化神经网络网络(CNN)被引入解决这个方程式,导致大量推论时间减少,其代价是无法保证解决方案的准确性。这种退步可能导致模拟的不准确性和可能不稳定的模拟。这也使得无法对CNN的快速化进行公平的评估,例如,在改变网络结构时,由于在不同的错误级别上进行了评估,因此无法对网络结构进行更快速化的评估。为了绕过这一问题,制定了一种混合战略,将CNN与传统的迭代解剂连接起来,以确保用户定义的准确性水平。CNN混合法方法在两个流程中进行了测试,由不设障碍和不设障碍的可变密度流来进行测试,能够淡化一般化的超常化能力,确保模拟的准确性能。 使用若干网络结构的预测的错误分布可以进一步调查。结果显示,作为平均速度差异的混合战略的阈值,即将CNNCN的网络的物理行为行为动作行为规范性行为在1号网络的精确度战略中可以使CNNCMS- 的系统结构的系统化结构在10级结构中进行。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员