Building interpretable parameterizations of real-world decision-making on the basis of demonstrated behavior -- i.e. trajectories of observations and actions made by an expert maximizing some unknown reward function -- is essential for introspecting and auditing policies in different institutions. In this paper, we propose learning explanations of expert decisions by modeling their reward function in terms of preferences with respect to "what if" outcomes: Given the current history of observations, what would happen if we took a particular action? To learn these cost-benefit tradeoffs associated with the expert's actions, we integrate counterfactual reasoning into batch inverse reinforcement learning. This offers a principled way of defining reward functions and explaining expert behavior, and also satisfies the constraints of real-world decision-making -- where active experimentation is often impossible (e.g. in healthcare). Additionally, by estimating the effects of different actions, counterfactuals readily tackle the off-policy nature of policy evaluation in the batch setting, and can naturally accommodate settings where the expert policies depend on histories of observations rather than just current states. Through illustrative experiments in both real and simulated medical environments, we highlight the effectiveness of our batch, counterfactual inverse reinforcement learning approach in recovering accurate and interpretable descriptions of behavior.


翻译:根据所显示的行为 -- -- 即对一位专家的观察和行动的轨迹,最大限度地增加一些未知的奖赏功能 -- -- 建立真实世界决策的可解释参数,对于不同机构进行深视和审计政策至关重要。在本文中,我们建议从“如果”结果的偏好的角度,对专家决定的奖赏功能进行模型化的学习解释:鉴于目前的观察历史,如果我们采取与专家行动有关的这些成本效益取舍,将会发生什么情况?为了了解这些与专家行动有关的成本效益取舍,我们将反事实推论纳入分批反强化学习。这提供了一种确定奖赏职能和解释专家行为的原则性方法,也满足了现实世界决策的制约因素 -- -- 在通常不可能进行积极实验的地方(例如保健领域),我们建议从“如果”结果的偏好的角度来看待他们的奖赏功能。此外,通过估计不同行动的效果,反事实很容易解决批量环境中政策评价的离政策非政策性质,并且自然能够适应专家政策依赖于观察历史而不是仅仅取决于当前状况的环境。通过在真实和模拟的医疗环境中进行说明性实验,我们强调可加强行为的方法的有效性。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员