U.S. Nuclear Regulatory Committee (NRC) and U.S. Department of Energy (DOE) initiated a future-focused research project to assess the regulatory viability of machine learning (ML) and artificial intelligence (AI)-driven Digital Twins (DTs) for nuclear applications. Advanced accident tolerant fuel (ATF) is one of the priority focus areas of the DOE/ NRC. DTs have the potential to transform the nuclear energy sector in the coming years by incorporating risk-informed decision-making into the Accelerated Fuel Qualification (AFQ) process for ATF. A DT framework can offer game-changing yet practical and informed solutions to the complex problem of qualifying advanced ATFs. However, novel ATF technology suffers from a couple of challenges, such as (i) Data unavailability; (ii) Lack of data, missing data; and (iii) Model uncertainty. These challenges must be resolved to gain the trust in DT framework development. In addition, DT-enabling technologies consist of three major areas: (i) modeling and simulation (M&S), covering uncertainty quantification (UQ), sensitivity analysis (SA), data analytics through ML/AI, physics-based models, and data-informed modeling, (ii) Advanced sensors/instrumentation, and (iii) Data management. UQ and SA are important segments of DT-enabling technologies to ensure trustworthiness, which need to be implemented to meet the DT requirement. Considering the regulatory standpoint of the modeling and simulation (M&S) aspect of DT, UQ and SA are paramount to the success of DT framework in terms of multi-criteria and risk-informed decision-making. In this study, the adaptability of polynomial chaos expansion (PCE) based UQ/SA in a non-intrusive method in BISON was investigated to ensure M&S aspects of the AFQ for ATF. This study introduces the ML-based UQ and SA methods while exhibiting actual applications to the finite element-based nuclear fuel performance code.


翻译:US. 核监管委员会(核监委)和美国能源部(能源部)启动了一个以未来为重点的研究项目,以评估核应用机器学习(ML)和人工智能驱动的数字双体(DTs)的监管可行性。高级事故容忍燃料(ATF)是DO/NRC的优先重点领域之一。DT有可能在未来几年里通过将风险知情决策纳入加速燃料认证的燃料资格(AFQ)进程来改造核能部门。 一项DT框架可以为符合资格的高级ATF这一复杂问题提供改变游戏的、实际的和知情的解决方案。然而,新的ATF技术面临若干挑战,如:(一) 数据缺乏;(二) 缺乏、数据缺失;(三) 模型不确定性。必须解决这些挑战,以获得对DT框架开发的信任。 此外,基于DT的测试技术包括三个主要领域:(一) 模型和模拟(M&S) 包括不确定性量化(UQ)、敏感性分析(SA)、数据分析(SA) 数据管理部分,通过数据测试(SDDR) 数据测试(S) 数据测试(S) 基础研究(SAL) 基础研究(IL)。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
On Creating a Comprehensive Food Database
Arxiv
0+阅读 · 2023年1月25日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员