This paper introduces a new benchmark for large-scale image similarity detection. This benchmark is used for the Image Similarity Challenge at NeurIPS'21 (ISC2021). The goal is to determine whether a query image is a modified copy of any image in a reference corpus of size 1~million. The benchmark features a variety of image transformations such as automated transformations, hand-crafted image edits and machine-learning based manipulations. This mimics real-life cases appearing in social media, for example for integrity-related problems dealing with misinformation and objectionable content. The strength of the image manipulations, and therefore the difficulty of the benchmark, is calibrated according to the performance of a set of baseline approaches. Both the query and reference set contain a majority of ``distractor'' images that do not match, which corresponds to a real-life needle-in-haystack setting, and the evaluation metric reflects that. We expect the DISC21 benchmark to promote image copy detection as an important and challenging computer vision task and refresh the state of the art.
翻译:本文引入了大规模图像相似性检测的新基准。 该基准用于 NeurIPS'21 图像相似性挑战( ISC2021) 。 目标是确定查询图像是否是1~百万大小参考体中任何图像的修改副本。 基准包含各种图像转换, 如自动转换、 手工制作图像编辑和基于机器学习的操控。 这模仿了社交媒体中出现的真实生活案例, 例如涉及错误和可反对内容的与完整性有关的问题。 图像操作的强度, 以及基准的难度, 是根据一套基线方法的性能校准的。 查询和参考集都包含大多数不匹配的“ 吸引者” 图像, 这与真实生活中的针头在哈伊斯塔克设置相对应, 评估指标反映了这一点。 我们期待 DISC21 基准能促进图像复制检测, 作为重要和具有挑战性的计算机视觉任务, 并更新艺术状态 。