Maximal clique enumeration is a fundamental graph mining task, but its utility is often limited by computational intractability and highly redundant output. To address these challenges, we introduce \emph{$ρ$-dense aggregators}, a novel approach that succinctly captures maximal clique structure. Instead of listing all cliques, we identify a small collection of clusters with edge density at least $ρ$ that collectively contain every maximal clique. In contrast to maximal clique enumeration, we prove that for all $ρ< 1$, every graph admits a $ρ$-dense aggregator of \emph{sub-exponential} size, $n^{O(\log_{1/ρ}n)}$, and provide an algorithm achieving this bound. For graphs with bounded degeneracy, a typical characteristic of real-world networks, our algorithm runs in near-linear time and produces near-linear size aggregators. We also establish a matching lower bound on aggregator size, proving our results are essentially tight. In an empirical evaluation on real-world networks, we demonstrate significant practical benefits for the use of aggregators: our algorithm is consistently faster than the state-of-the-art clique enumeration algorithm, with median speedups over $6\times$ for $ρ=0.1$ (and over $300\times$ in an extreme case), while delivering a much more concise structural summary.
翻译:极大团枚举是一项基础的图挖掘任务,但其应用常受限于计算不可行性和高度冗余的输出。为应对这些挑战,我们引入了\\emph{$ρ$-稠密聚合器}这一新颖方法,以简洁地捕捉极大团结构。该方法不列举所有团,而是识别一组边密度至少为$ρ$的小规模聚类簇,这些簇共同覆盖所有极大团。与极大团枚举相比,我们证明对于所有$ρ< 1$,任意图均存在规模为\\emph{次指数级}($n^{O(\\log_{1/ρ}n)}$)的$ρ$-稠密聚合器,并给出了达到该边界的算法。对于具有有界退化度(现实世界网络的典型特征)的图,我们的算法可在近线性时间内运行,并生成近线性规模的聚合器。我们还建立了聚合器规模的匹配下界,证明我们的结果本质上是紧致的。在现实世界网络的实证评估中,我们展示了聚合器使用的显著实践优势:相较于最先进的团枚举算法,我们的算法始终保持更快速度,在$ρ=0.1$时中位数加速超过$6\\times$(极端情况下超过$300\\times$),同时提供更为精简的结构摘要。