The Bouncy Particle Sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane tangent to the gradient of the negative log-target density at the arrival times of an inhomogeneous Poisson Process (PP) and by randomly perturbing its velocity at the arrival times of an homogeneous PP. Under regularity conditions, we show here that the process corresponding to the first component of the particle and its corresponding velocity converges weakly towards a Randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the ambient space goes to infinity. RHMC is another piecewise deterministic non-reversible Markov process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by randomly perturbing the momentum component. We then establish dimension-free convergence rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and hypocoercivity techniques.
翻译:博尼派粒子采样器是一种马可夫链的蒙特卡洛方法,它基于不可逆的片段确定性马可夫工艺。在这个方法中,一个粒子根据线性动态变化来探索兴趣空间,根据线性动态变化而演化,而线性动态随着超高机的正切性变化而改变为负日志-目标密度的梯度,在不对等的Poisson进程(PP)到达时,负正对焦点-目标密度的梯度变化,在同质PP到达时随机扰动速度变化。在正常条件下,我们在此显示,与粒子的第一个组成部分及其相应速度相对的流程微弱地集中到随机调整的汉密尔顿蒙特卡洛(RHMERMC)过程,作为环境空间的维度发展到无限。RHMMC是另一个小巧的、不可逆性、不可逆的Markov过程,在同质的PP的到达时,汉密尔顿式P(PMilsonian)动力部分被随机扰动。我们随后为紧紧紧随的Hescircircivtion 的海珊的极相操控目标,为RHMC建立无维趋同点。