We propose a coefficient of conditional dependence between two random variables $Y$ and $Z$ given a set of other variables $X_1,\ldots,X_p$, based on an i.i.d. sample. The coefficient has a long list of desirable properties, the most important of which is that under absolutely no distributional assumptions, it converges to a limit in $[0,1]$, where the limit is $0$ if and only if $Y$ and $Z$ are conditionally independent given $X_1,\ldots,X_p$, and is $1$ if and only if $Y$ is equal to a measurable function of $Z$ given $X_1,\ldots,X_p$. Moreover, it has a natural interpretation as a nonlinear generalization of the familiar partial $R^2$ statistic for measuring conditional dependence by regression. Using this statistic, we devise a new variable selection algorithm, called Feature Ordering by Conditional Independence (FOCI), which is model-free, has no tuning parameters, and is provably consistent under sparsity assumptions. A number of applications to synthetic and real datasets are worked out.


翻译:我们根据i.d.抽样,提出两个随机变量(美元)和Z美元之间的有条件依赖系数。该系数有很长的可取属性清单,其中最重要的是,在绝对没有分配假设的情况下,该系数会达到$0,1美元的限制,其中限额为$0,只有美元和Z美元有条件独立,以X_1,\ldots,X_p美元为条件,只有美元等于Z$的可测量函数(X_1,\ldots,X_p$),才为$1。此外,该系数自然解释为非线性地概括了人们熟悉的用回归衡量有条件依赖程度的部分$R%2的统计。使用这一统计,我们设计了新的变量选择算法,称为条件独立性调整法(FOCI),该算法是没有模型的,没有调整参数,并且根据宽度假设是可测量的。一些应用软件是合成的和真实数据集成的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员