In $3\times 3$ dimensions, entangled mixed states that are positive under partial transposition (PPT states) must have rank at least four. They are well understood. We say that they have rank $(4,4)$ since a state $\rho$ and its partial transpose $\rho^P$ both have rank four. The next problem is to understand the extremal PPT states of rank $(5,5)$. We call two states $\textrm{SL}\otimes\textrm{SL}$-equivalent if they are related by a product transformation. A generic rank $(5,5)$ PPT state $\rho$ is extremal, and $\rho$ and $\rho^P$ both have six product vectors in their ranges, and no product vectors in their kernels. The three numbers $\{6,6;0\}$ are $\textrm{SL}\otimes\textrm{SL}$-invariants that help us classify the state. We have studied numerically a few types of nongeneric rank five PPT states, in particular states with one or more product vectors in their kernels. We find an interesting new analytical construction of all rank four extremal PPT states, up to $\textrm{SL}\otimes\textrm{SL}$-equivalence, where they appear as boundary states on one single five dimensional face on the set of normalized PPT states. We say that a state $\rho$ is $\textrm{SL}\otimes\textrm{SL}$-symmetric if $\rho$ and $\rho^P$ are $\textrm{SL}\otimes\textrm{SL}$-equivalent, and is genuinely $\textrm{SL}\otimes\textrm{SL}$-symmetric if it is $\textrm{SL}\otimes\textrm{SL}$-equivalent to a state $\tau$ with $\tau=\tau^P$. Genuine $\textrm{SL}\otimes\textrm{SL}$-symmetry implies a special form of $\textrm{SL}\otimes\textrm{SL}$-symmetry. We have produced numerically a random sample of rank $(5,5)$ $\textrm{SL}\otimes\textrm{SL}$-symmetric states. About fifty of these are of type $\{6,6;0\}$, among those all are extremal and about half are genuinely $\textrm{SL}\otimes\textrm{SL}$-symmetric.
翻译:在 3 美元 的 3 个维度中, 在部分转换 (PPT) 下正值的混合状态 {PPT) 必须是至少4 美元 。 我们非常理解 。 我们说, 自 州 $\ 美元 和 部分转换 $ 美元 中, 两者都有 美元 4 美元 。 接下来的问题是 要理解 排名 (5,5,5 美元 ) 的 极端 PPT 状态。 如果与产品转换有关, 我们调用两个州 $\ textrm{SL_ 时间=textr} 美元 。 通用级别 $ (5,5,5 美元 美元 美元 美元 美元 美元, $\ 美元 和 美元 美元 两个州 。 三个数字 = 美元 = textr= 美元 美元, 如果 州 国家, 我们用数字研究了几种非 的 数字 美元, 的 Pr\ 美元 的 数字 的 值 的 美元 。