This work develops a powerful and versatile framework for determining acceptance ratios in Metropolis-Hastings type Markov kernels widely used in statistical sampling problems. Our approach allows us to derive new classes of kernels which unify random walk or diffusion-type sampling methods with more complicated "extended phase space" algorithms based around ideas from Hamiltonian dynamics. Our starting point is an abstract result developed in the generality of measurable state spaces that addresses proposal kernels that possess a certain involution structure. Note that, while this underlying proposal structure suggests a scope which includes Hamiltonian-type kernels, we demonstrate that our abstract result is, in an appropriate sense, equivalent to an earlier general state space setting developed in [Tierney, Annals of Applied Probability, 1998] where the connection to Hamiltonian methods was more obscure. Altogether, the theoretical unity and reach of our main result provides a basis for deriving novel sampling algorithms while laying bare important relationships between existing methods.
翻译:这项工作为确定大都会-哈斯廷斯式Markov内核广泛用于统计抽样问题的接受率开发了一个强大和多功能的框架。 我们的方法使我们能够从中得出新的内核类别,将随机行走或扩散类型的抽样方法与基于汉密尔顿动态的理念的更为复杂的“扩展阶段空间”算法统一起来。 我们的出发点是,一个抽象的结果,即可以测量的国家空间的普遍性,处理具有某种进化结构的提案内核。 注意,虽然这一基本提案结构表明的范围包括汉密尔顿式的内核,但我们表明,从适当意义上讲,我们的抽象结果相当于早先在[1998年《应用概率的Anals of Annal of Applicable 所开发的一般国家空间环境,与汉密尔顿式方法的联系更为模糊。 总体而言,我们主要结果的理论统一性和范围为得出新的抽样算法提供了基础,同时在现有方法之间建立了基本的重要关系。