BERT为代表的预训练语言模型在众多自然语言处理任务中取得了显著性能提升,并且随后涌现出一批效果更优的预训练语言模型。在本文中,我们将经典的预训练语言模型应用在中文场景并使用相同的实验设置去验证它们在中文领域的性能表现。同时,我们创新地提出了一种基于文本纠错的预训练语言模型MacBERT,应用纠错型掩码语言模型(MLM as correction,Mac)解决了预训练模型中“预训练-精调”不一致的问题。为了验证实验效果,我们选择了8个经典的中文自然语言处理任务,包括阅读理解、单句文本分类、句对文本分类等。大量实验结果表明所提出的MacBERT能够在大多数任务上取得显著性能提升。我们已将所有本文涉及到的中文预训练资源进行开源,希望能够进一步促进中文信息处理的研究与发展。

成为VIP会员查看完整内容
33

相关内容

最新《弱监督预训练语言模型微调》报告,52页ppt
专知会员服务
37+阅读 · 2020年12月26日
华为等发布《视觉Transformer转换器》综述论文,21页pdf
专知会员服务
85+阅读 · 2020年12月25日
专知会员服务
35+阅读 · 2020年11月29日
NLPCC 2020《预训练语言模型回顾》讲义下载,156页PPT
专知会员服务
47+阅读 · 2020年10月17日
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
【ACL2020】基于图神经网络的文本分类新方法
专知会员服务
68+阅读 · 2020年7月12日
【北航】面向自然语言处理的预训练技术研究综述
专知会员服务
112+阅读 · 2020年4月23日
专知会员服务
199+阅读 · 2020年3月6日
哈工大讯飞联合实验室发布中文XLNet预训练模型
哈工大SCIR
13+阅读 · 2019年8月20日
哈工大SCIR八篇论文被EMNLP-IJCNLP 2019录用
哈工大SCIR
23+阅读 · 2019年8月14日
哈工大SCIR两篇论文被IJCAI 2019录用
哈工大SCIR
7+阅读 · 2019年5月11日
最新论文解读 | 基于预训练自然语言生成的文本摘要方法
微软研究院AI头条
57+阅读 · 2019年3月19日
我中心3篇长文被ACL 2018录用
哈工大SCIR
5+阅读 · 2018年4月24日
Arxiv
0+阅读 · 2021年1月5日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关VIP内容
最新《弱监督预训练语言模型微调》报告,52页ppt
专知会员服务
37+阅读 · 2020年12月26日
华为等发布《视觉Transformer转换器》综述论文,21页pdf
专知会员服务
85+阅读 · 2020年12月25日
专知会员服务
35+阅读 · 2020年11月29日
NLPCC 2020《预训练语言模型回顾》讲义下载,156页PPT
专知会员服务
47+阅读 · 2020年10月17日
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
【ACL2020】基于图神经网络的文本分类新方法
专知会员服务
68+阅读 · 2020年7月12日
【北航】面向自然语言处理的预训练技术研究综述
专知会员服务
112+阅读 · 2020年4月23日
专知会员服务
199+阅读 · 2020年3月6日
微信扫码咨询专知VIP会员