Solving high-dimensional partial differential equations necessitates methods free of exponential scaling in the dimension of the problem. This work introduces a tensor network approach for the Kolmogorov backward equation via approximating directly the Markov operator. We show that the high-dimensional Markov operator can be obtained under a functional hierarchical tensor (FHT) ansatz with a hierarchical sketching algorithm. When the terminal condition admits an FHT ansatz, the proposed operator outputs an FHT ansatz for the PDE solution through an efficient functional tensor network contraction procedure. In addition, the proposed operator-based approach also provides an efficient way to solve the Kolmogorov forward equation when the initial distribution is in an FHT ansatz. We apply the proposed approach successfully to two challenging time-dependent Ginzburg-Landau models with hundreds of variables.
翻译:暂无翻译