Terahertz communication is one of the most promising wireless communication technologies for 6G generation and beyond. For THz systems to be practically adopted, channel estimation is one of the key issues. We consider the problem of channel modeling and estimation with deterministic channel propagation and the related physical characteristics of THz bands, and benchmark various machine learning algorithms to estimate THz channel, including neural networks (NN), logistic regression (LR), and projected gradient ascent (PGA). Numerical results show that PGA algorithm yields the most promising performance at SNR=0 dB with NMSE of -12.8 dB.
翻译:Terahertz 通信是6G世代及以后最有希望的无线通信技术之一。对于实际采用THz系统来说,频道估算是关键问题之一。我们考虑到频道建模和估算的问题,包括确定性频道传播和THz波段的相关物理特征,以及确定各种机器学习算法,以估计THz频道,包括神经网络(NN)、后勤回归(LR)和预测梯度上升(PGA)。数字结果显示,PGA算法在SNR=0 dB和NMSE -12.8 dB中产生最有希望的性能。