To cater to the demands of our rapidly growing Internet traffic, backbone networks need high-degree reconfigurable optical add/drop multiplexers (ROADMs) to simultaneously support multiple pairs of bi-directional fibers on each link. However, the traditional ROADM architecture based on the Spanke network is too complex to be directly scaled up to construct high-degree ROADMs. In addition, the widely deployed Spine-Leaf datacenter networks (DCNs) based on electrical switches consume too much power and exhibit high packet latency. Because of these issues, Clos networks are considered as promising alternatives for constructing large-scale ROADMs and all-optical DCNs. In this article, we look at a next-generation Clos-based ROADM architecture and show that it indeed provides better blocking performance with lower element and fiber complexities compared with a traditional Spanke-based ROADM architecture. We also discuss the application of a Clos network in all-optical DCNs to show that it can be used to effectively construct large-scale DCNs with significantly greater flexibility in supporting a variety of multicast services and in combining different network topologies.


翻译:为了满足我们迅速增长的互联网交通的需求,主干网需要高度可调制光学添加/投放多光化器(ROADMs),以便同时支持每个链接上的多对双向纤维,然而,基于Spanke网络的传统ROADM结构过于复杂,无法直接扩大,无法建立高度ROADM系统。此外,基于电开关的广泛部署的Spane-Leaf数据中心网络消耗了太多的电力,并显示出高容量的包装。由于这些问题,克洛网络被视为建造大型ROADMs和全光学DCN的有希望的替代方法。在本篇文章中,我们审视下一代基于Cloos的ROADM结构,并表明与传统的Spanke-ROADM结构相比,它确实提供了更低元素和纤维复杂性的更好阻碍性能。我们还讨论了在所有光化的DCNs网络中应用克洛斯网络,以表明它能够被使用来有效建造大型的DCN,在支持多种多式服务和将不同的网络组合中具有更大的灵活性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
38+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员