Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a cutting-plane method which solves the problem to certifiable optimality at the scale of selecting k=5 covariates from p=300 variables, and provides small bound gaps at a larger scale. We also propose a convex relaxation and greedy rounding scheme that provides bound gaps of $1-2\%$ in practice within minutes for $p=100$s or hours for $p=1,000$s and is therefore a viable alternative to the exact method at scale. Using real-world financial and medical datasets, we illustrate our approach's ability to derive interpretable principal components tractably at scale.


翻译:主要成分分析(PCA)是获取主要组成部分的流行的维度减少技术,这些主要组成部分是原始特征中一小部分的线性组合。现有方法无法用超过1美元=100美元的变量提供可证实的最佳主要组成部分。通过将稀有的五氯苯甲醚改制为混凝土混凝土半脱硫优化问题,我们设计了一种切割机方法,以解决在从p=300变量中选择 k=5 共变数的尺度上可证实的最佳性的问题,并在更大的尺度上提供小的捆绑差距。我们还提议了一个convex 放松和贪婪四舍五入方案,在实际操作中以分钟内提供1-2美元=100美元或1 000美元的小时的捆绑差距,因此是精确比例法的一种可行的替代方法。我们使用真实世界的金融和医疗数据集,说明我们的方法在规模上可以获取可解释的主要组成部分的能力。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
AI掘金志
7+阅读 · 2019年7月8日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
2+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员